LETTERS TO THE EDITOR

NOVEL REACTIONS TO FORM AN Si-O-Ge GROUP

L. Ignatovich, V. Muravenko, S. Grinberga, and E. Lukevics

Keywords: alkoxygermanes, alkoxysilanes, hydrogermanes, hydrosilanes, siloxygermanes, tris(pentafluorophenyl)borane.

In study of O-silylation of hydroxyl-containing compounds [1-3] and hydrosilylation of the carbonyl group [3-6] in the presence of tris(pentafluorophenyl)borane [7], further reduction of the initially formed alkoxysilanes by excess hydrosilane has been observed:

This reaction was suggested for preparative reduction of the carbonyl group to a methylene [8] or methyl [3, 8, 9] group without preliminary separation of the intermediate alkoxysilanes.

Another group of researchers who were interested in organosilicon reaction products (1) suggested using it for synthesis of new siloxanes and polysiloxanes [10, 11].

In a study of the mechanism of the reaction of hydrosilanes with alkoxysilanes in the presence of $B(C_6F_5)_3$, the following competing reaction was found involving exchange of substituents on the silicon atoms, with formation of a new hydrosilane and a new alkoxysilane, which ultimately leads to formation of two symmetric and one nonsymmetric disiloxane [12].

Alkylhydrosilanes [1-3, 5, 6, 9, 10, 12], arylhydrosilanes [4-6], alkylarylhydrosilanes [6, 10-12], and hydrosiloxanes [8, 10] have been used in reactions (1) and (2).

We have shown that hetarylhydrosilanes, such as methyl(2-furyl)(2-thienyl)silane, also react with alkoxysilanes in the presence of $B(C_6F_5)_3$. Its reaction with methyltriethoxysilane occurs with stepwise substitution of one and two ethoxy groups (Table 1, runs 6 and 7). With excess hydrosilane (run 8), we observe formation of 1,3-di(2-furyl)-1,3-dimethyl-1,3-di(2-thienyl)disiloxane (*via* exchange according to reaction (2)).

Condensation of triethylsilane with 1-ethoxysilatrane (run 10), containing a five-coordinate silicon atom in the ring, occurred with significantly more difficulty.

For the first time, we have established that alkoxygermanes (3) and hydrogermanes (4) enter into a similar reaction, with formation of an Si–O–Ge group.

Latvian Institute of Organic Synthesis, Riga LV-1006; e-mail: ign@osi.lv. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 299-302, February, 2006. Original article submitted January 20, 2006.

% by GC/MS	7	77	99	30	40 10	55	60	60			10
Major reaction products	6	Et ₃ SiOSiEt ₃	Et ₃ SiOGeEt ₃	MeSiOEt(OSiEt ₃) ₂	MeSi(OSiEt ₃), Et ₅ SiOSiEt ₅	MeSi(OEt) ₂ OGeEt ₃	MeSi(OEt) ₂ OGeEt ₃	OSi(OEt) ₂ Me	Me Since Sin	r 0∕Si(OEt)Me	
Reaction time, h	5	1	1	1		ŝ	3	1			
Hydrosilane equivalents	7	1	1	ю		3	4	1			
H-M ≷	3	Et ₃ SiH	Et_3GeH	Et ₃ SiH		Et ₃ GeH	Et_3GeH	H	C Me S		
∋M-OEt	2	Et ₃ SiOEt	Et ₃ SiOEt	MeSi(OEt) ₃		MeSi(OEt) ₃	MeSi(OEt) ₃	MeSi(OEt) ₃	, ,		
Run	1	1	2	б		4	5	9			

TABLE 1. Reaction of Hydrosilanes(germanes) with Alkoxysilanes(germanes)

_	2	3	4	5	9	L
	MeSi(OEt) ₃	H O Me S Me S	m	-	$\left[\left< \bigcup_{i=1}^{O} \sum_{i=1}^{S(OEI)ME} \right]_2 \right]$	80
	MeSi(OEt) ₃	Me Si Me	4.5	-	$\left[\left< \sum_{O} \sum_{Me}^{Si} \left< \sum_{S} \right> \right]_{2}^{O}$	85
	S Ge(OEt) ₃	Et ₃ SiH	б	1	$\left(\sum_{S} \right)_{Ge(OEt)_2OSIEt_3}$	20
	N(CH ₂ CH ₂ O) ₃ SiOEt	Et ₃ SiH	- 2	∞	N(CH ₂ CH ₂ O) ₃ SiOSiEt ₃	Traces

TABLE 1 (continued)

$$\geq$$
Si $-OR$ + H $-Ge \in$ \longrightarrow RH + \geq Si $-O-Ge \in$ (4)

In this case, hydrogermanes proved to be less reactive than hydrosilanes. Thus triethylgermane reacted with triethylethoxysilane more slowly than triethylsilane (runs 1 and 2), and only one ethoxy group was substituted in methyltriethoxysilane (runs 4 and 5) under conditions where triethylsilane substituted two and three ethoxy groups (run 3). Only one ethoxy group was substituted by the triethylsiloxy group in 2-thienyltriethoxygermane, when treated with triethylsilane (run 9).

The reactions were carried out in 8 ml toluene under a dry argon atmosphere with 1.4 mmol alkoxysilane and 0.07 mmol B(C_6F_5)₃; the products were analyzed by chromatography/mass spectrometry on an HP 6890 GC/MS spectrometer (70 eV) equipped with an HP-5 capillary column (30.0 m × 250 μ m × 0.25 μ m).

REFERENCES

- 1. V. Gevorgyan, Jian-Xiu Liu, M. Rubin, S. Benson, and Y. Yamamoto, *Tetrahedron Lett.*, **40**, 8919 (1999).
- 2 V. Gevorgyan, M. Rubin, S. Benson, Jian-Xiu Liu, and Y. Yamamoto, J. Org. Chem., 65, 6179 (2000).
- 3. V. Gevorgyan, M. Rubin, Jian-Xiu Liu, and Y. Yamamoto, J. Org. Chem., 66, 1672 (2001).
- 4. D. J. Parks and W. E. Piers, J. Am. Chem. Soc., 118, 9440 (1996).
- 5. D. J. Parks, J. M. Blackwell, and W. E. Piers, J. Org. Chem., 65, 3090 (2000).
- 6. J. M. Blackwell, D. J. Morrison, and W. E. Piers, *Tetrahedron*, 58, 8247 (2002).
- 7. W. E. Piers and T. Chivers, Chem. Soc. Rev., 26, 345 (1997).
- 8. S. Chandrasekhar, C. Raji Reddy, and B. Nagendra Babu, J. Org. Chem., 67, 9080 (2002).
- 9. G. B. Bajracharya, T. Nogami, T. Jin, K. Matsuda, V. Gevorgyan, and Y. Yamamoto, *Synthesis*, 308 (2004).
- 10. S. Rubinsztajn and J. A. Cella, *Polym. Prepr.*, **45**, 635 (2004).
- 11. S. Rubinsztajn and J. A. Cella, *Macromol.*, **38**, 1061 (2005).
- 12. J. Chojnowski, S. Rubinsztajn, J. A. Cella, W. Fortuniak, M. Cypryk, J. Kurjata, and K. Kazmierski, *Organometallics*, **24**, 6077 (2005).